首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12305篇
  免费   2243篇
  国内免费   1513篇
化学   8643篇
晶体学   165篇
力学   841篇
综合类   126篇
数学   1362篇
物理学   4924篇
  2024年   5篇
  2023年   289篇
  2022年   320篇
  2021年   487篇
  2020年   543篇
  2019年   550篇
  2018年   450篇
  2017年   402篇
  2016年   665篇
  2015年   631篇
  2014年   735篇
  2013年   899篇
  2012年   1149篇
  2011年   1133篇
  2010年   867篇
  2009年   798篇
  2008年   790篇
  2007年   699篇
  2006年   700篇
  2005年   605篇
  2004年   393篇
  2003年   333篇
  2002年   331篇
  2001年   242篇
  2000年   219篇
  1999年   216篇
  1998年   184篇
  1997年   210篇
  1996年   188篇
  1995年   171篇
  1994年   142篇
  1993年   105篇
  1992年   88篇
  1991年   85篇
  1990年   77篇
  1989年   70篇
  1988年   53篇
  1987年   29篇
  1986年   44篇
  1985年   32篇
  1984年   20篇
  1983年   17篇
  1982年   16篇
  1981年   7篇
  1980年   9篇
  1975年   7篇
  1973年   4篇
  1972年   7篇
  1965年   6篇
  1964年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
A novel PtSnNa/ZSM-5 monolithic catalyst was designed and synthesized for the propane dehydrogenation reaction, which was a significant transformation in industry. Experimental results showed that although the propane conversion and the propylene selectivity gradually fell down along with the reaction time, the descent speed of the PtSnNa/ZSM-5 monolithic catalyst was slower than that of the granule catalyst and the propane conversion and propylene selectivity of the reaction with monolithic catalyst still remained at a high level after 12 hr. The monolithic catalyst had regular pore structure that facilitated the separation of the product from the catalyst and reduced the limitation on internal and external diffusion and mass transfer, and led to the high catalytic activity and stability. The catalyst could be easily fabricated and was of highly industrial application potential.  相似文献   
92.
In the present work, a visible-light-driven Ag/AgBr/ZnFe2O4 photocatalyst has been successfully synthesized via a deposition–precipitation and photoreduction method. The crystal structure, chemical composition, morphology and optical properties of the as-prepared nanocomposites were characterized by X-ray diffraction spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscope, UV–vis diffuse reflectance spectroscopy and photoluminescence. The photocatalytic activities of the Ag/AgBr/ZnFe2O4 nanocomposites were evaluated through the photodegradation of gaseous toluene and methyl orange (MO) under visible light. The results revealed that the as-prepared Ag/AgBr/ZnFe2O4 nanocomposite exhibited excellent photocatalytic activity. The degrading efficiency of MO could still reach 90% after four cycles, and the Ag/AgBr/ZnFe2O4 nanocomposite could be recycled easily by a magnet. Additionally, the enhanced photocatalytic mechanism was discussed according to the trapping experiments, which indicated that the photo-generated holes (h+) and •O2 played important roles in photodegradation process. At last, a possible photocatalytic oxidation pathways of toluene was proposed based on the results of GC–MS. The Ag/AgBr/ZnFe2O4 composites showed potential application for efficient removal of organic pollutant.  相似文献   
93.
Genetically encoded fluorescent proteins (FPs) have been used for metal ion detection. However, their applications are restricted to a limited number of metal ions owing to the lack of available metal-binding proteins or peptides that can be fused to FPs and the difficulty in transforming the binding of metal ions into a change of fluorescent signal. We report herein the use of Mg2+-specific 10–23 or Zn2+-specific 8–17 RNA-cleaving DNAzymes to regulate the expression of FPs as a new class of ratiometric fluorescent sensors for metal ions. Specifically, we demonstrate the use of DNAzymes to suppress the expression of Clover2, a variant of the green FP (GFP), by cleaving the mRNA of Clover2, while the expression of Ruby2, a mutant of the red FP (RFP), is not affected. The Mg2+ or Zn2+ in HeLa cells can be detected using both confocal imaging and flow cytometry. Since a wide variety of metal-specific DNAzymes can be obtained, this method can likely be applied to imaging many other metal ions, expanding the range of the current genetically encoded fluorescent protein-based sensors.  相似文献   
94.
An ammonium-containing metal iodate fluoride compound, (NH4)Bi2(IO3)2F5, featuring a two-dimensional double-layered framework constructed by [BiO2F5]6− and [BiO4F4]9− polyhedra, as well as [IO3] groups, was successfully synthesized. The well-ordered alignment of these SHG-active units leads to an extraordinary strong SHG response of 9.2 times that of KDP. Moreover, this compound possesses a large birefringence (Δn=0.0690 at 589.3 nm), a wide energy band gap (Eg=3.88 eV), and a high laser damage threshold (LDT; 40.2×AgGaS2). In particular, thermochromic behavior was observed for the first time in this type of compound. Such multifunctional crystals will expand the application of nonlinear optical materials.  相似文献   
95.
96.
Synthetic strategies that enable rapid construction of covalent organic nanotubes with an angstrom-scale tubular pore remain scarcely reported. Reported here is a remarkably simple and mild one-pot polymerization protocol, employing POCl3 as the polymerization agent. This protocol efficiently generates polypyridine amide foldamer-based covalent organic nanotubes with a 2.8 nm length at a yield of 50 %. Trapping single-file water chains in the 2.8 Å tubular cavity, rich in hydrogen-bond donors and acceptors, these tubular polypyridine ensembles rapidly and selectively transport water at a rate of 1.6×109 H2O⋅S−1⋅channel−1 and protons at a speed as fast as gramicidin A, with a high rejection of ions.  相似文献   
97.
Newly established in 2018, the UK Research and Innovation (UKRI) strengthens the strategic coordination of the UK research and innovation system by bringing together seven Research Councils, Research England, and Innovate UK. Through its nine organizations, UKRI funds multidisciplinary and interdisciplinary research in a number of priority areas. It also runs the Strategic Priorities Fund to support multidisciplinary and interdisciplinary research in strategic areas identified by government policies as well as the Global Challenges Research Fund to promote challenge-led interdisciplinary research needed by developing countries. The UKRI makes significant efforts to engage stakeholders in the development, design, and implementation of multidisciplinary and interdisciplinary programs. It has also developed a range of mechanisms to improve the evaluation of multidisciplinary and interdisciplinary projects. Chinese science and innovation funding agencies could draw upon the UKRI experience from four aspects to advance interdisciplinary research in China.  相似文献   
98.
余凡  李宝 《大学化学》2020,35(1):76-79
为了有效提升学生在缓冲溶液学习过程中的学习兴趣及积极性,在此推荐一个将现实中的生活用品作为实验对象引入实验课教学过程中的案例。该实验设计将性质实验扩充到婴儿湿巾,将实验内容变为对婴儿湿巾工作原理的验证,而不再是过去简单的酸碱体系的配制及相关验证实验。通过该实验的实施,学生普遍反映能够有效激发其在学习缓冲溶液相关课程中的学习积极性与兴趣,并最终促使学生认知缓冲体系内pH变化的特点及缓冲机理。  相似文献   
99.
The Fe-based transition metal oxides are promising anode candidates for lithium storage considering their high specific capacity, low cost, and environmental compatibility. However, the poor electron/ion conductivity and significant volume stress limit their cycle and rate performances. Furthermore, the phenomena of capacity rise and sudden decay for α-Fe2O3 have appeared in most reports. Here, a uniform micro/nano α-Fe2O3 nanoaggregate conformably enclosed in an ultrathin N-doped carbon network (denoted as M/N-α-Fe2O3@NC) is designed. The M/N porous balls combine the merits of secondary nanoparticles to shorten the Li+ transportation pathways as well as alleviating volume expansion, and primary microballs to stabilize the electrode/electrolyte interface. Furthermore, the ultrathin carbon shell favors fast electron transfer and protects the electrode from electrolyte corrosion. Therefore, the M/N-α-Fe2O3@NC electrode delivers an excellent reversible capacity of 901 mA h g−1 with capacity retention up to 94.0 % after 200 cycles at 0.2 A g−1. Notably, the capacity rise does not happen during cycling. Moreover, the lithium storage mechanism is elucidated by ex situ XRD and HRTEM experiments. It is verified that the reversible phase transformation of α↔γ occurs during the first cycle, whereas only the α-Fe2O3 phase is reversibly transformed during subsequent cycles. This study offers a simple and scalable strategy for the practical application of high-performance Fe2O3 electrodes.  相似文献   
100.
Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 μWh cm−2 with power density of 14.1 mW cm−2 (156.7 mW cm−3) at 1.4 V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号